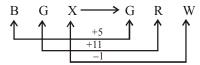

# SSC CGL - 180621 GRAND TEST

## **HINTS AND SOLUTIONS**

### ANSWER KEY


| 1  | (1) | 26 | (3) | 51 | (3) | 76  | (1) |
|----|-----|----|-----|----|-----|-----|-----|
| 2  | (1) | 27 | (3) | 52 | (4) | 77  | (3) |
| 3  | (2) | 28 | (4) | 53 | (4) | 78  | (4) |
| 4  | (4) | 29 | (3) | 54 | (4) | 79  | (1) |
| 5  | (1) | 30 | (2) | 55 | (4) | 80  | (4) |
| 6  | (4) | 31 | (1) | 56 | (3) | 81  | (1) |
| 7  | (2) | 32 | (2) | 57 | (4) | 82  | (2) |
| 8  | (2) | 33 | (2) | 58 | (2) | 83  | (2) |
| 9  | (1) | 34 | (1) | 59 | (2) | 84  | (1) |
| 10 | (3) | 35 | (2) | 60 | (2) | 85  | (2) |
| 11 | (3) | 36 | (3) | 61 | (4) | 86  | (2) |
| 12 | (4) | 37 | (2) | 62 | (2) | 87  | (2) |
| 13 | (3) | 38 | (2) | 63 | (2) | 88  | (4) |
| 14 | (4) | 39 | (2) | 64 | (3) | 89  | (4) |
| 15 | (2) | 40 | (4) | 65 | (3) | 90  | (3) |
| 16 | (1) | 41 | (1) | 66 | (2) | 91  | (4) |
| 17 | (1) | 42 | (2) | 67 | (3) | 92  | (3) |
| 18 | (1) | 43 | (1) | 68 | (1) | 93  | (4) |
| 19 | (1) | 44 | (4) | 69 | (1) | 94  | (1) |
| 20 | (4) | 45 | (2) | 70 | (4) | 95  | (2) |
| 21 | (3) | 46 | (4) | 71 | (2) | 96  | (3) |
| 22 | (1) | 47 | (1) | 72 | (1) | 97  | (2) |
| 23 | (3) | 48 | (4) | 73 | (2) | 98  | (4) |
| 24 | (2) | 49 | (4) | 74 | (3) | 99  | (2) |
| 25 | (3) | 50 | (1) | 75 | (4) | 100 | (4) |

- (1)  $(1)^2 = 1$ ;  $(3)^2 = 9 \Rightarrow 19$ 1. Similarly,  $(2)^2 = 4$ ;  $(1)^2 = 1 \Rightarrow 41$
- 2. (1) 1 + 16 + 16 + 12 + 5 = 50Similarly, 15 + 18 ++ 14 + 7 + 5 = 60
- (2) Fire causes smoke. Smoke comes out when something 3. is burnt in fire. Similarly, cloud causes rain.
- 4. Grenade and gun are firearms. Similarly, head and brain are sensitive organs.



Similarly,

1



- (4) Major, Colonel and Brigadier are different ranks in the 6. Indian Army. Admiral is the topmost rank in the Indian
- (2) Except diesease, all other terms denote obstruction, 7. hindrance or interruption.
- 8. (2) Except remedy, all other terms denote loss of something.
- 9. (1) The difference between the two numbers in the number pair 6246 – 6296 is least.

$$6296 - 6246 = 50$$

$$7267 - 7137 = 130$$

$$4684 - 4344 = 340$$

$$5465 - 5235 = 230$$

10. (1) 
$$D \xrightarrow{+4} H \xrightarrow{+4} L \xrightarrow{+4} P \xrightarrow{+4} T$$

$$A \xrightarrow{+4} E \xrightarrow{+4} I \xrightarrow{+4} M \xrightarrow{+4} Q$$

11. (3) 
$$B \xrightarrow{+3} E \xrightarrow{+4} I \xrightarrow{+5} N \xrightarrow{+6} T \xrightarrow{+7} A$$

12. (4) 
$$A \xrightarrow{+2} C \xrightarrow{+2} E \xrightarrow{+2} G$$
 $Z \xrightarrow{-2} X \xrightarrow{-2} V \xrightarrow{-2} T$ 

13. (3) [a c d b / d a c b / c d a b / a c d b / d a

14. (4) 
$$21 + 7 = 28$$

$$28 + 5 = 33$$

$$33 + 3 = \boxed{36}$$

$$36 + 1 = 37$$

$$37 - 1 = 36$$

Therefore, the number 35 is wrong in the series.

15. (2) 0+7=7

$$7 + 21 = 28$$

$$28 + 35 = 63$$

$$63 + 61 = 124$$

$$124 + 87 = 211$$

Therefore, the number 215 is wrong in the series.

(1)  $2 \times 3 \times 5 \times 4 = 120$ 

$$120 \times 120 = 14400$$

17. (1) 
$$\begin{array}{|c|c|c|} \hline L \Rightarrow \times & M \Rightarrow + \\ \hline P \Rightarrow + & Q \Rightarrow - \\ \hline \end{array}$$

16 P 24 M 8 Q 6 M 2 L 3 = ?

$$\Rightarrow ? = 16 + 24 + 8 - 6 \div 2 \times 3$$

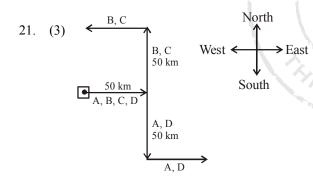
$$\Rightarrow$$
 ? = 16 + 3 - 3 × 3

$$\Rightarrow$$
 ? = 16 + 3 - 9 =  $\boxed{10}$ 

SSC CGL



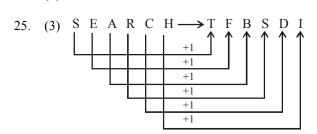



Therefore,

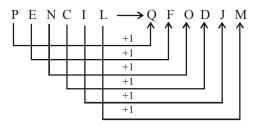
| M            | A            | M            | M            | O            | T            | Η            |
|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| $\downarrow$ |
| 4            | 3            | 4            | 4            | 6            | 8            | 1            |

19. (1) 
$$16 \Rightarrow (2+2)^2 = (4)^2$$
  
 $9 \Rightarrow (3+0)^2 = (3)^2$   
 $81 \Rightarrow (1+8)^2 = (9)^2$   
Similarly,  $64 \Rightarrow (4+4)^2 = (8)^2$ 

20. (4) The product of two numbers in a sector is equal to the central number in the previous sector.


$$3 \times 5 = 15$$
  
 $8 \times 3 = 24$   
 $7 \times 2 = 14$   
 $5 \times 3 = \boxed{15}$   
 $8 \times 4 = 32$   
 $9 \times 1 = 9$   
 $9 \times 2 = 18$   
 $7 \times 4 = 28$ 




 $A \Rightarrow East, B \Rightarrow West, C \Rightarrow West, D \Rightarrow East.$ 

- 22. (1) Growth and development of human organism is a continuous process. Some changes take place in human body now and then. Therefore, neither Conclusion I nor II follows.
- 23. (3) QMPN PQR ROPQNOP PQR MQRO PQR PPRR PQR P

24. (2)



Similarly,



51. (3) Average units consumption in 2012

$$= \frac{600 + 700 + 400 + 300 + 200}{5} = \frac{2200}{5} = 440 \text{ units}$$

Required months ⇒ July, August.

52. (4) Average units consumption in year 2013

$$= \frac{550 + 500 + 400 + 350 + 500}{5} = \frac{2300}{5} = 460 \text{ units.}$$

53. (4) In the month of November, Difference = 500 - 200 = 300 units In the month of August, Difference = 700 - 500 = 200 units

54. (4) Total consumption in 2012 = 2200 units Total consumption in 2013 = 2300 units Percentage increase

$$= \left(\frac{2300 - 2200}{2200}\right) \times 100 = \frac{100}{22} = \frac{50}{11} = 4.5\%$$

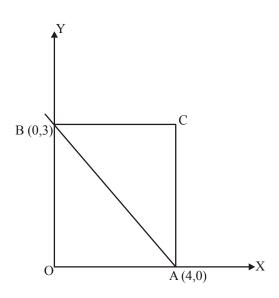
55. (4) Let A, B, C, D and E in kg. represent their respective weights. Then,

A + B + C = 
$$84 \times 3 = 252 \text{ kg}$$
.  
A + B + C + D =  $80 \times 4 = 320 \text{ kg}$ .  
 $\therefore$  D =  $(320 - 252) \text{ kg} = 68 \text{ kg}$   
E =  $68 + 3 = 71 \text{ kg}$ .  
B + C + D + E =  $79 \times 4 = 316 \text{ kg}$ .  
Now,  
(A + B + C + D) - (B + C + D + E) =  $320 - 316$   
 $\Rightarrow$  A - E =  $4 \text{ kg}$ .  
 $\Rightarrow$  A =  $4 + E = 4 + 71 = 75 \text{ kg}$ .

56. (3) x = 4

 $\Rightarrow$  Equation of a line parallel to y-axis, y = 3  $\Rightarrow$  Equation of a line parallel to x-axis. Putting x = 0 in the equation 3x + 4y = 12,

$$3 \times 0 + 4y = 12 \Rightarrow y = \frac{12}{4} = 3$$

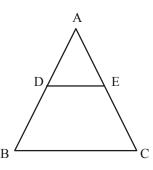

 $\therefore$  Co-ordinates of the point of intersection on y-axis = (0, 3)

Again putting y = 0 in the equaiton 3x + 4y = 12,

$$3x + 4 \times 0 = 12 \Rightarrow x = \frac{12}{3} = 4$$

 $\therefore$  Co-ordinates of the point of intersection on x-axis = (4, 0).






$$AC = 3$$
 units,  $BC = 4$  units

∴ Area of ∆ABC

$$= \frac{1}{2} \times BC \times AC = \frac{1}{2} \times 4 \times 3 = 6 \text{ sq. units}$$

57. (4)



$$\angle BAC = 40^{\circ}, \angle ABC = 65^{\circ}$$

$$\therefore \angle ACB = 180^{\circ} - 40^{\circ} = 75^{\circ}$$

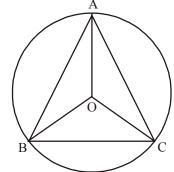
DE || BC

$$\therefore \angle AED = \angle ACB = 75^{\circ}$$

$$\therefore \angle CED = 180^{\circ} - 75^{\circ} = 105^{\circ}$$

58. (1) 
$$x^2 + y^2 + z^2 = 2 (x + z - 1)$$
  
 $\Rightarrow x^2 + y^2 + z^2 = 2x + 2z - 2$   
 $\Rightarrow x^2 - 2x + y^2 + z^2 - 2z + 2 = 0$   
 $\Rightarrow x^2 - 2x + 1 + y^2 + z^2 - 2z + 1 = 0$   
 $\Rightarrow (x - 1)^2 + y^2 + (z - 1)^2 = 0$ 

$$[\because a^2 + b^2 + c^2 = 0 \Rightarrow a = 0, b = 0, c = 0]$$


$$\therefore x - 1 = 0 \Rightarrow x = 1$$

y = 0

$$z - 1 = 0 \Rightarrow z = 1$$

$$x^3 + y^3 + z^3 = 1 + 0 + 1 = 2$$

59. (2)



In 
$$\triangle ABC$$
,  $\angle BAC = 85^{\circ}$ ,  $\angle BCA = 75^{\circ}$ 

$$\therefore \angle ABC = 180^{\circ} - 85^{\circ} - 75^{\circ} = 20^{\circ}$$

The angle subtended by an arc of a circle at the centre is double the angle subtended by it at any point on the remaining part of the circle.

$$\therefore \angle AOC = \angle ABC = 40^{\circ}$$

 $\therefore$  OA = OC = radii

In  $\triangle OAC$ ,  $\angle OAC = \angle OCA$  [The angles at the base of an isosceles traingle are equal]

$$\angle OAC + \angle OCA = 180^{\circ} - 40^{\circ} = 140^{\circ}$$

$$\therefore \angle OAC = \frac{140^{\circ}}{2} = 70^{\circ}$$

0. (2) 
$$\frac{\sec \theta + \tan \theta}{\sec \theta - \tan \theta} = 2\frac{51}{79} = \frac{158 + 51}{79} = \frac{209}{79}$$

By componendo and divdendo,

$$\frac{\sec\theta + \tan\theta + \sec\theta - \tan\theta}{\sec\theta + \tan\theta - \sec\theta + \tan\theta} = \frac{209 + 79}{209 - 79}$$

$$\Rightarrow \frac{2\sec\theta}{2\tan\theta} = \frac{288}{130} \Rightarrow \frac{\sec\theta}{\tan\theta} = \frac{144}{65}$$

$$\therefore \sin \theta = \frac{\tan \theta}{\sec \theta} = \frac{65}{144}$$

61. (4) Volume of prism = Area of base  $\times$  height

$$\Rightarrow 7200 = \frac{3\sqrt{3}}{2} p^2 \times 100\sqrt{3}$$

$$\Rightarrow 7200 = 50 \times 3 \times 3p^2 \Rightarrow p^2 = \frac{7200}{50 \times 3 \times 3} = 16$$

$$\therefore p = \sqrt{16} = 4$$

62. (3) Single equivalent discount

$$= \left(10 + 20 - \frac{10 \times 20}{100}\right)\% = (30 - 2)\% = 28\%$$

∴ C.P. of article = 100 - 28 = ₹72

Actual cost price of article =  $\frac{72 \times 110}{100}$  = ₹ 79.2.

... For a profit of 15%, required S.P.

$$=\frac{79.2\times115}{100}=₹91.08.$$

68. (1)



63. (2) 
$$x = z = 225, y = 226$$
  
 $\therefore x + y + z = 225 + 226 + 225 = 676$   
 $\therefore x^3 + y^3 + z^3 - 3xyz$   

$$= \frac{1}{2}(x + y + z)[(x - y)^2 + (y - z)^2 + (z - x)^2]$$

$$= \frac{1}{2} \times 676[(225 - 226)^2 + (226 - 225)^2 + (225 - 225)^2]$$

$$= \frac{1}{2} \times 676 \times (1 + 1) = 676$$

64. (3) Required mass of lead  

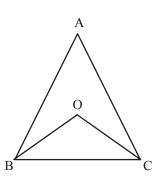
$$= 8000 \times \frac{60}{100} \times \left(1 - \frac{3}{400}\right)$$

$$= 8000 \times \frac{60}{100} \times \frac{397}{400} = 4764 \text{ kg}.$$

65. (3) 
$$4a - \frac{4}{a} = -3$$
  
On dividing by 4,  

$$\Rightarrow a - \frac{1}{a} = \frac{-3}{4}$$

$$\therefore a^3 - \frac{1}{a^3} = \left(a - \frac{1}{a}\right)^3 + 3a \times \frac{1}{a}\left(a - \frac{1}{a}\right)$$


$$= \left(\frac{-3}{4}\right)^3 + 3 \times \frac{-3}{4} = -\frac{27}{64} - \frac{9}{4} = \frac{-27 - 144}{64} = \frac{-171}{64}$$

$$\therefore a^3 - \frac{1}{a^3} + 3 = \frac{-171}{64} + 3 = \frac{-171 + 192}{64} = \frac{21}{64}$$

66. (2) Expression = 
$$2b^2c^2 + 2c^2a^2 + 2a^2b^2 - a^4 - b^4 - c^4$$
  
=  $4b^2c^2 - (2b^2c^2 - 2c^2a^2 - 2a^2b^2 + a^4 + b^4 + c^4)$   
=  $(2bc)^2 - (a^2 - b^2 - c^2)^2$   
=  $(2bc + a^2 - b^2 - c^2)(2bc - a^2 + b^2 + c^2)$   
=  $(a^2 - (b^2 + c^2 - 2bc))(b^2 + c^2 + 2bc - a^2)$   
=  $(a^2 - (b - c)^2)((b + c)^2 - a^2)$   
=  $(a - b + c)(a + b - c)(a + b + c)(b + c - a)$   
If  $a + b - c = 0$   
 $\therefore$  Expression = 0

1f a + b - c = 0  $\therefore$  Expression = 0 67. (3) Let the C.P. of article be Rs.100 and the marked price be  $\mathbf{\xi}$  x. Case I  $\frac{\mathbf{x} \times 90}{100} = 120 \Rightarrow \mathbf{x} = \frac{120 \times 100}{90} = \mathbf{\xi} \frac{400}{3}$ Case II  $S.P. = \frac{\mathbf{x} \times 80}{100} = \mathbf{\xi} \frac{4\mathbf{x}}{5} = \mathbf{\xi} \left(\frac{4}{5} \times \frac{400}{3}\right) = \mathbf{\xi} \frac{320}{3}$   $\therefore \text{ Profit} = \mathbf{\xi} \left(\frac{320}{3} - 100\right) = \mathbf{\xi} \left(\frac{320 - 300}{3}\right) = \mathbf{\xi} \frac{20}{3}$ 

$$\therefore \text{ Profit percent} = \frac{20}{3}\% = 6\frac{2}{3}\%$$



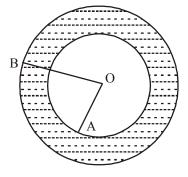
$$\angle OBC = \frac{1}{2} \angle ABC, \ \angle OCB = \frac{1}{2} \angle ACB$$
From  $\triangle OBC$ ,  $\angle OBC + \angle OCB + \angle BOC = 180^{\circ}$ 

$$\frac{1}{2} (\angle ABC + \angle ACB) + \angle BOC = 180^{\circ}$$

$$\Rightarrow \frac{1}{2} (180^{\circ} - \angle BAC) + \angle BOC = 180^{\circ}$$

$$\Rightarrow \frac{1}{2} (180^{\circ} - 100^{\circ}) + \angle BOC = 180^{\circ}$$

Time taken by C = 3x days According to the question,  $\frac{1}{x} + \frac{1}{2x} + \frac{1}{3x} = \frac{1}{6}$  $\Rightarrow \frac{6+3+2}{6x} = \frac{1}{6} \Rightarrow \frac{11}{6x} = \frac{1}{6} \Rightarrow 6x = 6 \times 11$ 


 $\Rightarrow \angle BOC = 180^{\circ} - 40^{\circ} = 140^{\circ}$ 

Let time taken by A = x days  $\therefore$  Time taken by B = 2x days

$$\Rightarrow x = \frac{6 \times 11}{6} = 11$$

70. (4)

 $\therefore$  Time taken by C alone =  $3x = 3 \times 11 = 33$  days



Let the radius of swimming pool be r metre. Breadth of shaded part = 4 metre  $\therefore$  OB = (r + 4) metre

$$\pi \times OB^2 - \pi \times OA^2 = \frac{11}{25}\pi \times OA^2$$

$$\Rightarrow (r+4)^2 - r^2 = \frac{11}{25}r^2$$

$$\Rightarrow$$
 r<sup>2</sup> +8r+16-r<sup>2</sup> =  $\frac{11}{25}$ r<sup>2</sup>  $\Rightarrow$  8r+16 =  $\frac{11}{25}$ r<sup>2</sup>

$$\Rightarrow 200r + 400 = 11r^2 \Rightarrow 11r^2 - 200r - 400 = 0$$

$$\Rightarrow 11r^2 - 220r + 20r - 400 = 0$$

$$\Rightarrow 11r(r-20) + 20(r-20) = 0$$

$$\Rightarrow (r-20)(11r+20) = 0$$

$$\Rightarrow$$
 r = 20 metre because r  $\neq -\frac{20}{11}$  metre.

71. (2) Let C complete the work in x days.

$$\therefore$$
 B's 1 day's work =  $\frac{1}{20} - \frac{1}{x}$ 

and, A's 1 day's work = 
$$\frac{2-3}{60} + \frac{1}{x} = \frac{1}{x} - \frac{1}{60}$$

According to the question,

$$5\left(\frac{1}{x} - \frac{1}{60}\right) + 15\left(\frac{1}{20} - \frac{1}{x}\right) + \frac{18}{x} = 1$$

$$\Rightarrow \frac{5}{x} - \frac{1}{12} + \frac{15}{20} - \frac{15}{x} + \frac{18}{x} = 1$$

$$\Rightarrow \frac{5}{x} - \frac{15}{x} + \frac{18}{x} = 1 + \frac{1}{12} - \frac{3}{4}$$

$$\Rightarrow \left(\frac{5-15+18}{x}\right) = \frac{12+1-9}{12} \Rightarrow \frac{8}{x} = \frac{1}{3}$$

$$\Rightarrow$$
 x = 8 × 3 = 24 days.

72. (1) 
$$x + \frac{1}{x} = 1$$

$$\Rightarrow x^2 + 1 = x \Rightarrow x^2 - x + 1 = 0$$

$$\therefore \frac{2}{x^2 - x + 2} = \frac{2}{x^2 - x + 1 + 1} = \frac{2}{0 + 1} = 2$$

73. (2)  $\tan A + \cot A = 2$ 

$$\Rightarrow \tan A + \frac{1}{\tan A} = 2 \Rightarrow \frac{\tan^2 A + 1}{\tan A} = 2$$

$$\Rightarrow \tan^2 A + 1 = 2 \tan A \Rightarrow \tan^2 A - 2 \tan A + 1 = 0$$

$$\Rightarrow$$
  $(\tan A - 1)^2 = 0 \Rightarrow \tan A - 1 = 0 \Rightarrow \tan A = 1$ 

$$\Rightarrow$$
 cot A = 1

$$\therefore \tan^{10} A + \cot^{10} A = 1 + 1 = 2$$

74. (3) Here distance is constant.

∴ Speed 
$$\propto \frac{1}{\text{Time}}$$





∴ Ratio of the speeds of A and B =  $\frac{\frac{7}{2}}{\frac{1}{4}}$  = 7:8

 $\therefore$  A's speed = 7x kmph (let)

B's speed = 8x kmph

$$\therefore$$
 AB = 7x × 4 = 28x km.

Let both trains cross each other after 't' hours from 7 a.m. According to the question,

$$7x(t+2) + 8x \times t = 28x \Rightarrow 7t + 14 + 8t = 28$$

$$\Rightarrow 15t = 28 - 14 = 4$$

$$\Rightarrow$$
 t =  $\frac{14}{15}$  hours =  $\left(\frac{14}{15} \times 60\right)$  min. = 56 min.

 $\therefore$  Required time = 7 : 56 a.m.

75. (4) Radius of cylindrical vessel = r cm. (let) Volume of conical piece of iron

$$= \frac{1}{3}\pi R^2 h = \left(\frac{1}{3}\pi \times 14 \times 14 \times 30\right) cu. cm.$$

Volume of raised wagter =  $\pi r^2 \times 6.4$  cu. cm.

$$\therefore \pi r^2 \times 6.4 = \frac{1}{3} \pi \times 14 \times 14 \times 30$$

$$\Rightarrow r^2 = \frac{14 \times 14 \times 10}{6.4} \Rightarrow r^2 = \frac{14^2 \times 10^2}{8^2} \Rightarrow r = \frac{14 \times 10}{8}$$

$$\Rightarrow 2r = \frac{2 \times 14 \times 10}{8} = 35 \text{ cm} = \text{diameter}$$

76. (1) Here, some were surprised/ Some categorically denied ... should be used.

77. (3) Here, the speed the ship sailed/travelled at .... should be used.

81. (1) The word **Notion (Noun)** means : belief; desire; intention; tought.

82. (2) The word **Vivacious (Adjective)** means : having a lively, attractive personality; energetic.

#### Look at the sentence:

He had three pretty vivacious daughters.

83. (2) The word **Forthright (Adjective)** means: frank; direct and honest in manner and speech; candid.

The word **Tricky (Adjective)** means: Clever but likely to trick you, deceive you, deceitful.

84. (1) The word **Antagonism (Noun)** means: hostility; feelings of hatred and opposition; animosity; enmity. The word **Cordiality (Noun)** means: in a pleasant and friendly manner.

**Look at the sentence :** The antagonism he felt towards his old enemy was still very strong.

You are cordially invited to the celebration.

85. (2) The word **Vanity (Noun)** means: too much pride in your own appearance, abilities or achievements; arrogance. The word **Humility (Noun)** means: the quality of being humble.

86. (2) Idiom **pay through the nose** means : to pay too much money for something.

87. (2) Idiom **pick holes in something** means: to find the weak points in something such as a plan, suggestion etc.

92. (3) The word **Incantation** means: special words that are spoken or sung to have a magic effect.